Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biology (Basel) ; 12(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37759665

RESUMO

A critical step in the immunogenicity cascade is attributed to human leukocyte antigen (HLA) II presentation triggering T cell immune responses. The liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based major histocompatibility complex (MHC) II-associated peptide proteomics (MAPPs) assay is implemented during preclinical risk assessments to identify biotherapeutic-derived T cell epitopes. Although studies indicate that HLA-DP and HLA-DQ alleles are linked to immunogenicity, most MAPPs studies are restricted to using HLA-DR as the dominant HLA II genotype due to the lack of well-characterized immunoprecipitating antibodies. Here, we address this issue by testing various commercially available clones of MHC-II pan (CR3/43, WR18, and Tü39), HLA-DP (B7/21), and HLA-DQ (SPV-L3 and 1a3) antibodies in the MAPPs assay, and characterizing identified peptides according to binding specificity. Our results reveal that HLA II receptor-precipitating reagents with similar reported specificities differ based on clonality and that MHC-II pan antibodies do not entirely exhibit pan-specific tendencies. Since no individual antibody clone is able to recover the complete HLA II peptide repertoire, we recommend a mixed strategy of clones L243, WR18, and SPV-L3 in a single immunoprecipitation step for more robust compound-specific peptide detection. Ultimately, our optimized MAPPs strategy improves the predictability and additional identification of T cell epitopes in immunogenicity risk assessments.

2.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559166

RESUMO

Immunogenicity, defined as the ability to provoke an immune response, can be either wanted (i.e., vaccines) or unwanted. The latter refers to an immune response to protein or peptide therapeutics, characterized by the production of anti-drug antibodies, which may affect the efficacy and/or the safety profiles of these drugs. Consequently, evaluation of the risk of immunogenicity early in the development of biotherapeutics is of critical importance for defining their efficacy and safety profiles. Here, we describe and validate a fit-for-purpose FluoroSpot-based in vitro assay for the evaluation of drug-specific T cell responses. A panel of 24 biotherapeutics with a wide range of clinical anti-drug antibody response rates were tested in this assay. We demonstrated that using suitable cutoffs and donor cohort sizes, this assay could identify most of the compounds with high clinical immunogenicity rates (71% and 78% for sensitivity and specificity, respectively) while we characterized the main sources of assay variability. Overall, these data indicate that the dendritic cell and CD4+ T cell restimulation assay published herein could be a valuable tool to assess the risk of drug-specific T cell responses and contribute to the selection of clinical candidates in early development.

3.
Front Immunol ; 13: 932252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36177046

RESUMO

CD4+ T-cell activation through recognition of Human Leukocyte Antigen II (HLAII)-presented peptides is a key step in the development of unwanted immune response against biotherapeutics, such as the generation of anti-drug antibodies (ADA). Therefore, the identification of HLAII-presented peptides derived from biotherapeutics is a crucial part of immunogenicity risk assessment and mitigation strategies during drug development. To date, numerous CD4+ T-cell epitopes have been identified by HLAII immunopeptidomics in antibody-based biotherapeutics using either their native or aggregated form. Antibody-target immune complexes have been detected in patients with ADA and are thought to play a role in ADA development by enhancing the presentation of CD4+ T-cell epitopes at the surface of antigen presenting cells (APCs). The aim of this study was to investigate the effect of biotherapeutic antibody-target immune complexes on the HLAII peptide presentation of biotherapeutics in human primary monocyte-derived dendritic cells (DCs). The trimeric tumor necrosis factor (TNF) and its biotherapeutic antagonists infliximab (INFL), adalimumab (ADAL), and a single armed Fab' were used as a model system. The HLAII immunopeptidome of DCs loaded with antagonists or their immune complexes with TNF was analyzed by trapped ion mobility time-of-flight mass spectrometry (timsTOF MS) leading to the identification of ~ 12,000 unique HLAII-associated peptides per preparation. Anti-TNF sequences were detected at a median of 0.3% of the total immunopeptidome, against a majority background of peptides from endogenous and media-derived proteins. TNF antagonist presentation spanned the variable and constant regions in a widespread manner in both light and heavy chains, consistent with previously discovered HLAII peptides. This investigation extends the collection of observed HLAII peptides from anti-TNF biotherapeutics to include sequences that at least partially span the complementary determining regions (CDRs), such as the LCDR1 for both INFL and ADAL. Although antagonist presentation varied significantly across donors, peptides from both bivalent antagonists INFL and ADAL were more highly presented relative to the Fab'. While TNF immune complexes did not alter overall HLAII presentation, a moderate increase in presentation of a subset of peptide clusters was observed in the case of INFL-TNF, which included HCDR2, HCDR3 and LCDR2 sequences.


Assuntos
Epitopos de Linfócito T , Inibidores do Fator de Necrose Tumoral , Adalimumab , Complexo Antígeno-Anticorpo , Antígenos HLA , Humanos , Infliximab/uso terapêutico , Peptídeos , Fator de Necrose Tumoral alfa/metabolismo
4.
BioDrugs ; 34(2): 253, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32103456

RESUMO

The article Immunogenicity of Biosimilars for Rheumatic Diseases, Plaque Psoriasis, and Inflammatory Bowel Disease: A Review from Clinical Trials and Regulatory Documents, written by Vibeke Strand, Joao Gonçalves, Timothy P. Hickling, Heather E. Jones, Lisa Marshall and John D. Isaacs, was originally published Online First without Open Access.

5.
BioDrugs ; 34(1): 27-37, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31721107

RESUMO

The goal of this narrative review was to summarize immunogenicity data of biosimilars or biosimilar candidates for rheumatic diseases, plaque psoriasis, or inflammatory bowel disease (IBD), available in peer-reviewed publications or regulatory documents. PubMed records and regulatory documents were searched for immunogenicity data of TNFα or CD20 inhibitor biosimilars or biosimilar candidates. Data collected included the proportion of patients positive for anti-drug antibodies (ADAbs), proportion with neutralizing antibodies (nAbs) among ADAb-positive patients, ADAb/nAb assay characteristics, cross-reactivity, and the effects of ADAbs on pharmacokinetics, pharmacodynamics, efficacy, and safety. We identified eight biosimilars or biosimilar candidates for adalimumab (BI 695501, SB5, ABP 501, GP2017, PF-06410293, MSB-11022, FKB-327, ZRC-3197) four for etanercept (SB4, GP2015, CHS-0214, LBEC0101), and three each for infliximab (SB2, CT-P13, GP1111) and rituximab (CT-P10, GP2013, PF-05280586) with immunogenicity data. Randomized, head-to-head trials with reference products varied in design and methodology of ADAb/nAb detection. The lowest proportions of ADAb-positive (0-13%) and nAb-positive patients (0-3%) were observed in the trials of etanercept and its biosimilars, and the highest with adalimumab, infliximab, and their biosimilars (ADAbs: ≤ 64%; nAbs: ≤ 100%). The most common method of ADAb detection was electrochemiluminescence, and ADAb positivity was associated with nominally inferior efficacy and safety. Overall, there were no significant immunogenicity differences between biosimilars and reference products. However, there are many discrepancies in assessing and reporting clinical immunogenicity. In conclusion, immunogenicity data of biosimilars or biosimilar candidates for TNFα or CD20 inhibitors were collected in trials that varied in design and procedures for ADAb/nAb detection. In general, immunogenicity parameters of biosimilars are similar to those of their reference products.

7.
Bioanalysis ; 11(17): 1631-1643, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31208200

RESUMO

Therapeutic protein drugs have significantly improved the management of many severe and chronic diseases. However, their development and optimal clinical application are complicated by the induction of unwanted immune responses. Therapeutic protein-induced antidrug antibodies can alter drug pharmacokinetics and pharmacodynamics leading to impaired efficacy and occasionally serious safety issues. There has been a growing interest over the past decade in developing methods to assess the risk of unwanted immunogenicity during preclinical drug development, with the aim to mitigate the risk during the molecular design phase, clinical development and when products reach the market. Here, we discuss approaches to therapeutic protein immunogenicity risk assessment, with attention to assays and in vivo models used to mitigate this risk.


Assuntos
Proteínas/imunologia , Proteínas/uso terapêutico , Medição de Risco/métodos , Animais , Humanos , Imunidade/efeitos dos fármacos , Proteínas/efeitos adversos
9.
J Immunother Cancer ; 7(1): 105, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30992085

RESUMO

The increasing use of multiple immunomodulatory (IMD) agents for cancer therapies (e.g. antibodies targeting immune checkpoints, bispecific antibodies, and chimeric antigen receptor [CAR]-T cells), is raising questions on their potential immunogenicity and effects on treatment. In this review, we outline the mechanisms of action (MOA) of approved, antibody-based IMD agents, potentially related to their immunogenicity, and discuss the reported incidence of anti-drug antibodies (ADA) as well as their clinical relevance in patients with cancer. In addition, we discuss the impact of the administration route and potential strategies to reduce the incidence of ADA and manage treated patients. Analysis of published reports indicated that the risk of immunogenicity did not appear to correlate with the MOA of anti-programmed death 1 (PD-1)/PD-ligand 1 monoclonal antibodies nor to substantially affect treatment with most of these agents in the majority of patients evaluated to date. Treatment with B-cell depleting agents appears associated with a low risk of immunogenicity. No significant difference in ADA incidence was found between the intravenous and subcutaneous administration routes for a panel of non-oncology IMD antibodies. Additionally, while the data suggest a higher likelihood of immunogenicity for antibodies with T-cell or antigen-presenting cell (APC) targets versus B-cell targets, it is possible to have targets expressed on APCs or T cells and still have a low incidence of immunogenicity.


Assuntos
Antineoplásicos Imunológicos/efeitos adversos , Doenças do Sistema Imunitário/imunologia , Imunoterapia Adotiva/efeitos adversos , Depleção Linfocítica/efeitos adversos , Neoplasias/terapia , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/imunologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Humanos , Doenças do Sistema Imunitário/induzido quimicamente , Doenças do Sistema Imunitário/epidemiologia , Doenças do Sistema Imunitário/prevenção & controle , Imunossupressores/uso terapêutico , Imunoterapia Adotiva/métodos , Incidência , Depleção Linfocítica/métodos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos Quiméricos/imunologia , Resultado do Tratamento
10.
J Immunol Res ; 2015: 401956, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26682236

RESUMO

Therapeutic protein products (TPP) have been widely used to treat a variety of human diseases, including cancer, hemophilia, and autoimmune diseases. However, TPP can induce unwanted immune responses that can impact both drug efficacy and patient safety. The presence of aggregates is of particular concern as they have been implicated in inducing both T cell-independent and T cell-dependent immune responses. We used mathematical modeling to evaluate several mechanisms through which aggregates of TPP could contribute to the development of immunogenicity. Modeling interactions between aggregates and B cell receptors demonstrated that aggregates are unlikely to induce T cell-independent immune responses by cross-linking B cell receptors because the amount of signal transducing complex that can form under physiologically relevant conditions is limited. We systematically evaluate the role of aggregates in inducing T cell-dependent immune responses using a recently developed multiscale mechanistic mathematical model. Our analysis indicates that aggregates could contribute to T cell-dependent immune response by inducing high affinity epitopes which may not be present in the nonaggregated TPP and/or by enhancing danger signals to break tolerance. In summary, our computational analysis is suggestive of novel insights into the mechanisms underlying aggregate-induced immunogenicity, which could be used to develop mitigation strategies.


Assuntos
Anticorpos Monoclonais/farmacologia , Citocinas/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Modelos Imunológicos , Agregados Proteicos/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos Monoclonais/química , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Linfócitos B/citologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Simulação por Computador , Citocinas/química , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/química , Agregados Proteicos/imunologia , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/imunologia , Proteínas Recombinantes de Fusão/química , Transdução de Sinais , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
11.
Proc Natl Acad Sci U S A ; 112(50): 15354-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621728

RESUMO

Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Regiões Determinantes de Complementaridade/imunologia , Células Germinativas/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Especificidade de Anticorpos/imunologia , Células Clonais , Regiões Determinantes de Complementaridade/química , Simulação por Computador , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/imunologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Biblioteca de Peptídeos , Estabilidade Proteica , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência , Análise de Sequência de Proteína , Proteínas tau/química , Proteínas tau/imunologia
12.
Cell Immunol ; 295(2): 118-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25880103

RESUMO

Therapeutic protein products (TPPs) are of considerable value in the treatment of a variety of diseases, including cancer, hemophilia, and autoimmune diseases. The success of TPP mainly results from prolonged half-life, increased target specificity and decreased intrinsic toxicity compared with small molecule drugs. However, unwanted immune responses against TPP, such as generation of anti-drug antibody, can impact both drug efficacy and patient safety, which has led to requirements for increased monitoring in regulatory studies and clinical practice, termination of drug development, or even withdrawal of marketed products. We present an overview of current knowledge on immunogenicity of TPP and its impact on efficacy and safety. We also discuss methods for measurement and prediction of immunogenicity and review both product-related and patient-related risk factors that affect its development, and efforts that may be taken to mitigate it. Lastly, we discuss gaps in knowledge and technology and what is needed to fill these.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Doenças Autoimunes/tratamento farmacológico , Anticorpos Monoclonais/efeitos adversos , Formação de Anticorpos/imunologia , Doenças Autoimunes/imunologia , Humanos , Fatores de Risco , Resultado do Tratamento
13.
J Pharmacokinet Pharmacodyn ; 41(5): 445-59, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25326873

RESUMO

A key role of B cells in the mammalian immune response is the generation of antibodies that serve to protect the organism against antigenic challenges. The same process may also be detrimental in the context of autoimmunity. Several modeling approaches have been applied to this aspect of the immune response, from predicting potential epitopes to describing B cells progress through developmental models and simulating antibody production. Here we review some of the modeling techniques, and summarize models that describe different activation mechanisms for B cells, including T cell dependent and independent models. We focus on viral infection as a prototype system, and briefly describe case studies in other disease areas such as bacterial infection and oncology. We single out aspects of the B cell response for which there are current knowledge gaps. We outline areas in need of further research in modeling applications to ultimately produce a "B cell module" for a complete immune response model.


Assuntos
Linfócitos B/imunologia , Modelos Imunológicos , Viroses/imunologia , Infecções Bacterianas/imunologia , Humanos , Neoplasias/imunologia , Linfócitos T/imunologia
14.
J Innate Immun ; 6(5): 676-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24854201

RESUMO

L-ficolin is a soluble pattern recognition molecule expressed by the liver that contributes to innate immune defense against microorganisms. It is well described that binding of L-ficolin to specific pathogen-associated molecular patterns activates the lectin complement pathway, resulting in opsonization and lysis of pathogens. In this study, we demonstrated that in addition to this indirect effect, L-ficolin has a direct neutralizing effect against hepatitis C virus (HCV) entry. Specific, dose-dependent binding of recombinant L-ficolin to HCV glycoproteins E1 and E2 was observed. This interaction was inhibited by soluble L-ficolin ligands. Interaction of L-ficolin with E1 and E2 potently inhibited entry of retroviral pseudoparticles bearing these glycoproteins. L-ficolin also inhibited entry of cell-cultured HCV in a calcium-dependent manner. Neutralizing concentrations of L-ficolin were found to be circulating in the serum of HCV-infected individuals. This is the first description of direct neutralization of HCV entry by a ficolin and highlights a novel role for L-ficolin as a virus entry inhibitor.


Assuntos
Hepacivirus/fisiologia , Hepatite C/imunologia , Lectinas/metabolismo , Fígado/efeitos dos fármacos , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas Recombinantes/metabolismo , Lectina de Ligação a Manose da Via do Complemento , Células HEK293 , Hepacivirus/patogenicidade , Hepatite C/transmissão , Humanos , Fígado/fisiologia , Fígado/virologia , Ligação Proteica/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Virulência , Internalização do Vírus/efeitos dos fármacos , Ficolinas
15.
BMC Syst Biol ; 7: 95, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-24074340

RESUMO

BACKGROUND: The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. RESULTS: A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-ß. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The results demonstrate how this framework can be used to integrate mathematical models of the immune response from several published sources and describe qualitative predictions of global immune system response arising from the integrated, hybrid model. In addition, we show how the model can be expanded to include novel biological findings. Case studies were carried out to simulate TB infection, tumor rejection, response to a blood borne pathogen and the consequences of accounting for regulatory T-cells. CONCLUSIONS: The final result of this work is a postulated and increasingly comprehensive representation of the mammalian immune system, based on physiological knowledge and susceptible to further experimental testing and validation. We believe that the integrated nature of FIRM has the potential to simulate a range of responses under a variety of conditions, from modeling of immune responses after tuberculosis (TB) infection to tumor formation in tissues. FIRM also has the flexibility to be expanded to include both complex and novel immunological response features as our knowledge of the immune system advances.


Assuntos
Imunidade , Modelos Imunológicos , Biologia de Sistemas/métodos , Linfócitos B/imunologia , Patógenos Transmitidos pelo Sangue , Cinética , Neoplasias/imunologia , Linfócitos T/imunologia , Tuberculose/imunologia
16.
MAbs ; 5(6): 882-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23995618

RESUMO

While myriad molecular formats for bispecific antibodies have been examined to date, the simplest structures are often based on the scFv. Issues with stability and manufacturability in scFv-based bispecific molecules, however, have been a significant hindrance to their development, particularly for high-concentration, stable formulations that allow subcutaneous delivery. Our aim was to generate a tetravalent bispecific molecule targeting two inflammatory mediators for synergistic immune modulation. We focused on an scFv-Fc-scFv format, with a flexible (A4T)3 linker coupling an additional scFv to the C-terminus of an scFv-Fc. While one of the lead scFvs isolated directly from a naïve library was well-behaved and sufficiently potent, the parental anti-CXCL13 scFv 3B4 required optimization for affinity, stability, and cynomolgus ortholog cross-reactivity. To achieve this, we eschewed framework-based stabilizing mutations in favor of complementarity-determining region (CDR) mutagenesis and re-selection for simultaneous improvements in both affinity and thermal stability. Phage-displayed 3B4 CDR-mutant libraries were used in an aggressive "hammer-hug" selection strategy that incorporated thermal challenge, functional, and biophysical screening. This approach identified leads with improved stability and>18-fold, and 4,100-fold higher affinity for both human and cynomolgus CXCL13, respectively. Improvements were exclusively mediated through only 4 mutations in VL-CDR3. Lead scFvs were reformatted into scFv-Fc-scFvs and their biophysical properties ranked. Our final candidate could be formulated in a standard biopharmaceutical platform buffer at 100 mg/ml with<2% high molecular weight species present after 7 weeks at 4 °C and viscosity<15 cP. This workflow has facilitated the identification of a truly manufacturable scFv-based bispecific therapeutic suitable for subcutaneous administration.


Assuntos
Anticorpos Biespecíficos/genética , Regiões Determinantes de Complementaridade/genética , Engenharia de Proteínas , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Animais , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Injeções Subcutâneas , Biblioteca de Peptídeos , Estabilidade Proteica , Ratos , Anticorpos de Cadeia Única/genética , Temperatura
17.
Cells ; 2(1): 19-42, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24709642

RESUMO

CD8+ T cells have the potential to control HSV-2 infection. However, limited information has been available on CD8+ T cell epitopes or the functionality of antigen specific T cells during infection or following immunization with experimental vaccines. Peptide panels from HSV-2 proteins ICP27, VP22 and VP13/14 were selected from in silico predictions of binding to human HLA-A*0201 and mouse H-2Kd, Ld and Dd molecules. Nine previously uncharacterized CD8+ T cell epitopes were identified from HSV-2 infected BALB/c mice. HSV-2 specific peptide sequences stabilized HLA-A*02 surface expression with intermediate or high affinity binding. Peptide specific CD8+ human T cell lines from peripheral blood lymphocytes were generated from a HLA-A*02+ donor. High frequencies of peptide specific CD8+ T cell responses were elicited in mice by DNA vaccination with ICP27, VP22 and VP13/14, as demonstrated by CD107a mobilization. Vaccine driven T cell responses displayed a more focused immune response than those induced by viral infection. Furthermore, vaccination with ICP27 reduced viral shedding and reduced the clinical impact of disease. In conclusion, this study describes novel HSV-2 epitopes eliciting strong CD8+ T cell responses that may facilitate epitope based vaccine design and aid immunomonitoring of antigen specific T cell frequencies in preclinical and clinical settings.

18.
Antivir Ther ; 17(5): 869-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22505586

RESUMO

BACKGROUND: This study presents preclinical data of a novel interferon (IFN)-α8 fusion protein, PF-04849285, and compares it with IFN-α2 and pegylated IFN-α2; the latter being the current standard of care for HCV. METHODS: The antiviral properties were evaluated in vitro using the HCV replication assay (replicon) and the general encephalomyocarditis virus assay. The binding affinity to both IFNR-subunits was assessed using surface plasmon resonance. Ex vivo experiments using cynomolgus monkey and human blood were used for the evaluation of induction of IFN-inducible biomarkers (interferon inducible protein 10 [IP-10], 2'-5'-oligoadenylate synthetase [OAS2] and interleukin-6 [IL-6]). The molecule was tested intravenously and subcutaneously in cynomolgus monkey in a single dose study for two weeks at 0.01, 1, 5 and 20 mg/kg. Each route and dose combination was given to a single male animal, blood samples were collected for evaluation of biomarkers and pharmacokinetics. The compound was also tested in cynomolgus monkey in a multiple dose study for four weeks, with a twice-a-week dosing prior to a three-week wash-out period for toxicokinetics, pharmacokinetics, and biomarker evaluation at 20, 50 or 100 mg/kg subcutaneously and 20 mg/kg intravenously. RESULTS: The molecule is 10× more potent than the pegylated IFN-α2a, with potency similar to the unmodified IFN-α2a. No unanticipated findings were observed in cynomolgus monkey when dosed up to 20 mg/kg, >10,000-fold margin over the anticipated efficacious human dose. CONCLUSIONS: The biomarker and toxicological findings were consistent with a potent IFN molecule. The potency and pharmacokinetic properties of the molecule are consistent with dosing at least every two weeks with the potential for monthly dosing' and not 'at least twice daily' as presented in the original [corrected].


Assuntos
Antivirais/farmacologia , Hepatite C/tratamento farmacológico , Interferon-alfa/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Antivirais/farmacocinética , Antivirais/toxicidade , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Vírus da Encefalomiocardite/efeitos dos fármacos , Feminino , Hepacivirus/efeitos dos fármacos , Humanos , Interferon alfa-2 , Interferon-alfa/administração & dosagem , Interferon-alfa/farmacocinética , Interferon-alfa/toxicidade , Macaca fascicularis , Masculino , Receptores de Interferon/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/toxicidade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Resultado do Tratamento , Replicação Viral/efeitos dos fármacos
19.
MAbs ; 4(6): 673-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23676205

RESUMO

Advances in recombinant antibody technology and protein engineering have provided the opportunity to reduce antibodies to their smallest binding domain components and have concomitantly driven the requirement for devising strategies to increase serum half-life to optimise drug exposure, thereby increasing therapeutic efficacy. In this study, we adopted an immunization route to raise picomolar affinity shark immunoglobulin new antigen receptors (IgNARs) to target human serum albumin (HSA). From our model shark species, Squalus acanthias, a phage display library encompassing the variable binding domain of IgNAR (VNAR) was constructed, screened against target, and positive clones were characterized for affinity and specificity. N-terminal and C-terminal molecular fusions of our lead hit in complex with a naïve VNAR domain were expressed, purified and exhibited the retention of high affinity binding to HSA, but also cross-selectivity to mouse, rat and monkey serum albumin both in vitro and in vivo. Furthermore, the naïve VNAR had enhanced pharmacokinetic (PK) characteristics in both N- and C-terminal orientations and when tested as a three domain construct with naïve VNAR flanking the HSA binding domain at both the N and C termini. Molecules derived from this platform technology also demonstrated the potential for clinical utility by being available via the subcutaneous route of delivery. This study thus demonstrates the first in vivo functional efficacy of a VNAR binding domain with the ability to enhance PK properties and support delivery of multifunctional therapies.


Assuntos
Produtos Biológicos/farmacocinética , Receptores de Antígenos/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Anticorpos de Domínio Único/metabolismo , Animais , Afinidade de Anticorpos , Especificidade de Anticorpos , Desenho de Fármacos , Haplorrinos , Humanos , Camundongos , Engenharia de Proteínas/métodos , Ratos , Receptores de Antígenos/genética , Proteínas Recombinantes de Fusão/genética , Albumina Sérica/imunologia , Tubarões , Anticorpos de Domínio Único/genética
20.
Protein Cell ; 1(7): 664-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21203938

RESUMO

Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.


Assuntos
Hepacivirus/fisiologia , Lectina de Ligação a Manose/metabolismo , Serina Proteases Associadas a Proteína de Ligação a Manose/metabolismo , Proteínas do Envelope Viral/metabolismo , Ligação Competitiva , Glicosilação , Hepacivirus/genética , Hepacivirus/patogenicidade , Humanos , Monossacarídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Células Tumorais Cultivadas , Vírion/patogenicidade , Vírion/fisiologia , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...